Über dieses Projekt

SIGNAL

Aluminium und Titan ressourceneffizient formen: mit sinterbasierter additiver Fertigung

Anwendung: 🛱 🛪 🛨 🤛 🚊 🐟

leichtbauatlas.de Seite 1 von 8

Über dieses Projekt

Material: Aluminium, Titan

Dieses Projekt wird gefördert im Technologietransfer-Programm Leichtbau (TTP LB) durch das Bundesministerium für Wirtschaft und Energie.

Technologietransfer-Programm Leichtbau

Hintergrund

Die Herstellung von Leichtbauteilen für den Mobilitätssektor ist oft material- und energieintensiv. In der konventionellen Fertigung entsteht viel Abfall: Beim Zerspanen von Aluminium oder Titan gehen bis zu 90#Prozent des Materials verloren – mit entsprechend hohem CO#-Ausstoß.

Additive Verfahren wie 3D-Druck bieten zwar Potenzial, stoßen bei Leichtmetallen aber an Grenzen: Schmelzbasierte Verfahren benötigen Stützstrukturen, die sich nur aufwendig entfernen lassen. Außerdem hängen die Materialeigenschaften stark von der Belastungsrichtung ab – das erschwert den Einsatz in sicherheitsrelevanten Bereichen. Auch die Nachbearbeitung ist meist aufwendig.

Einen alternativen Ansatz bieten neue, sinterbasierte Fertigungsverfahren. Dabei wird Metall- oder Keramikpulver unterhalb des Schmelzpunkts zu einem festen Bauteil "verbacken". Das ermöglicht eine endkonturnahe Fertigung ohne Stützstrukturen und spart Material sowie Energie. Gleichzeitig bietet das Verfahren größere Gestaltungsfreiheit und unterstützt die Topologieoptimierung – also den gezielten Einsatz von Material dort, wo es gebraucht wird.

Besonders Aluminium galt bislang als schwer sinterbar. Genau hier setzt das Projekt SIGNAL an: Das Team will Fertigungsprozesse für Titan- und Aluminiumlegierungen entwickeln, die technisch, wirtschaftlich und ökologisch tragfähig sind.

leichtbauatlas.de Seite 2 von 8

Über dieses Projekt

Ziel

Die Projektpartner entwickeln neue Fertigungsrouten für Leichtbauteile aus Aluminium- und Titanlegierungen – mit dem Ziel, die Verfahren effizienter, ressourcenschonender und digital unterstützt nutzbar zu machen. Im Fokus stehen sinterbasierte, additive Fertigungsverfahren, die insbesondere im Mobilitätssektor Anwendung finden sollen.

Die Forschenden betrachten die gesamte Prozesskette: von der Entwicklung geeigneter Legierungen über die Formgebung und Wärmebehandlung bis zur Optimierung des fertigen Bauteils. Eine zentrale Herausforderung ist die Formulierung einer Aluminiumlegierung, die sich für das Sintern eignet – denn Aluminium gilt aufgrund seiner Materialeigenschaften bislang als schwer sinterbar. Mithilfe Künstlicher Intelligenz will das Team die Legierungsentwicklung beschleunigen und den experimentellen Aufwand reduzieren.

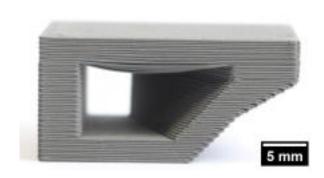
Darüber hinaus plant das Team, neue Gestaltungsregeln und Methoden zur Topologie-optimierung zu entwickeln, die den besonderen Anforderungen des Sinterverfahrens gerecht werden. Auch die digitale Prozessüberwachung spielt eine wichtige Rolle: Mit einem Online-Monitoring lassen sich Fehler frühzeitig erkennen und Ausschuss vermeiden. Das Projekt zielt nicht nur auf technische Neuerungen ab, sondern auch auf deutliche CO#-Einsparungen – sowohl während der Herstellung als auch beim späteren Einsatz der Leichtbauteile.

leichtbauatlas.de Seite 3 von 8

Über dieses Projekt

Vorgehen

Das Projektteam verfolgt einen praxisnahen und systematischen Ansatz. Ausgehend von den Anforderungen der Mobilitätsbranche definieren die Forschenden geeignete Bauteilkategorien und relevante Struktureigenschaften.


Darauf aufbauend entwickeln sie sogenannte Feedstocks – druckfähige Mischungen aus Metallpulver und Bindemittel – für verschiedene sinterbasierte Verfahren. Ziel ist es, Grünteile, also ungefestigte Rohbauteile, mit hoher Dichte und möglichst fehlerfrei herzustellen, um sie im Anschluss stabil sintern zu können.

Parallel erstellen die Forschenden präzise Temperatur- und Atmosphärenprofile für das thermische Sintern und das Entbindern, also das Entfernen des Binders. Diese Prozesse erfordern hohe Genauigkeit: Schon geringe Abweichungen können zu Rissen oder Verzug führen. Deshalb nutzt das Team eine Sintersimulation, um Schrumpfung und Verformung vorab zu berechnen. Die Ergebnisse fließen direkt ins Bauteildesign ein – so lassen sich Geometrien frühzeitig anpassen. Auch hier unterstützt Künstliche Intelligenz, etwa bei der Legierungsentwicklung, um physische Tests zu reduzieren.

Ein digitales Monitoring erkennt Fehler in Echtzeit. So entsteht eine durchgängige, industrietaugliche Prozesskette – von der Materialentwicklung bis zum geprüften Bauteil.

leichtbauatlas.de Seite 4 von 8

Über dieses Projekt

Förderlaufzeit:

Förderkennzeichen: 03LB2060 Fördersumme: 3,6 Mio. EUR

Abschlussbericht:

 $\textbf{Weiterf\"{u}hrende} \hspace{1.5cm} \ \, \square foerderportal.bund.de/foekat/jsp/SucheAction.do?$

Webseiten: actionMode=view&fkz=03LB - SIGNAL im Förderkatalog des Bundes

leichtbauatlas.de Seite 5 von 8

Projektkoordination

Ansprechperson:

Hr. Florian Gerdts

+49 0431 65946166

florian.gerdts@element22.com

Organisation:

Element22 GmbH

Wischhofstr. 1-3, Geb. 13 24148 Kiel Schleswig-Holstein Deutschland

Projektpartner

MUT Advanced Heating GmbH, SACS Aerospace GmbH, HAW Hamburg - Department Maschinenbau und Produktion

leichtbauatlas.de Seite 6 von 8

	Realisierung
Angebot	
Dienstleistungen & Beratung Beratung, Konstruktion, Sonstige (Montage von komplexen Bauteilen)	~
Produkte Bauteile & Komponenten, Werkstoffe & Materialien	✓
Technologiefeld	
Anlagenbau & Automatisierung	
Design & Auslegung	
Funktionsintegration	
Mess-, Test- & Prüftechnik	
Modellierung & Simulation Prozesse, Werkstoffe & Materialien	✓
Verwertungstechnologien	
Fertigungsverfahren	
Additive Fertigung 3D-Druck	✓
Bearbeiten und Trennen	
Beschichten (Oberflächentechnik)	
Faserverbundtechnik	
Fügen	
Stoffeigenschaften ändern Wärmebehandeln	✓
Textiltechnik	
Umformen	

leichtbauatlas.de Seite 7 von 8

Einordnung in den Leichtbau	
	Realisierung
Material	
Biogene Werkstoffe	
Fasern	
Funktionale Werkstoffe	
Kunststoffe	
Metalle Aluminium, Titan	✓
Strukturkeramiken	
(Technische) Textilien	
Verbundmaterialien	
Zellulare Werkstoffe (Schaumwerkstoffe)	

leichtbauatlas.de Seite 8 von 8