Über dieses Projekt

WAAMlight

Komplexe Stahlknoten ressourcenschonend und effizient fertigen: per Lichtbogen-3D-Druck

Anwendung:

Material:

Stahl

Dieses Projekt wird gefördert im Technologietransfer-Programm Leichtbau (TTP LB) durch das Bundesministerium für Wirtschaft und Energie.

Technologietransfer-Programm Leichtbau

leichtbauatlas.de Seite 1 von 7

Über dieses Projekt

Hintergrund

Architektonisch anspruchsvolle Tragwerke im Stahlbau werden zunehmend komplexer – und damit schwieriger herzustellen. Vor allem bei räumlich gekrümmten Strukturen mit geringer Wiederholungsrate, wie sie etwa im neuen Stuttgarter Hauptbahnhof realisiert werden, stoßen klassische Fertigungsverfahren an ihre Grenzen. Die dafür nötigen Stahlknotenbauteile müssen in kleinteiliger Handarbeit geschweißt, gefräst oder gegossen werden. Das ist nicht nur kosten- und zeitintensiv, sondern auch ressourcenaufwändig.

Parallel steigen die Anforderungen an nachhaltige Bauweisen: Benötigt werden Lösungen, die Material einsparen, langlebig sind und eine gute CO#-Bilanz aufweisen. Additive Fertigungsverfahren – insbesondere das Wire Arc Additive Manufacturing (WAAM), ein 3D-Druckverfahren bei dem Metallbauteile schichtweise durch Lichtbogenschweißen aus Draht aufgebaut werden – versprechen hier einen Ausweg. Sie ermöglichen komplexe Geometrien, die sich an natürlichen Vorbildern orientieren, mit hoher Effizienz herzustellen. Doch der Einsatz im großformatigen Stahlleichtbau steckt noch in den Anfängen – hier setzt das Forschungsprojekt WAAMlight an.

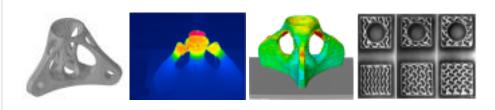
Ziel

Das Projektteam verfolgt das Ziel, Stahlknotenbauteile mit komplexen Geometrien ressourceneffizient, funktionsgerecht und gestalterisch hochwertig additiv herzustellen – und damit die Grundlage für einen breiten industriellen Einsatz dieser Technik im Leichtbau zu schaffen. Im Zentrum steht der Transfer von WAAM in den konstruktiven Stahlbau, insbesondere für bionisch inspirierte Knotenstrukturen mit hohem Gestaltungsspielraum. Dazu wollen die Forschenden neue Konstruktionsmethoden und Bemessungs-konzepte entwickeln, die auf die Besonderheiten des WAAM-Verfahrens eingehen. Ziel ist es, Gewicht zu reduzieren, Material gezielt dort einzusetzen, wo es mechanisch notwendig ist, und durch die Kombination verschiedener Stahlsorten lokal optimierte Festigkeiten zu erreichen. Einen weiteren Fokus legen die Projektbeteiligten auf den Korrosionsschutz additiv gefertigter Bauteile – ein kritischer Aspekt für die Langlebigkeit. Langfristig soll WAAMlight zur Etablierung neuer Standards im Leichtbau beitragen und die CO#-Bilanz von Tragwerken signifikant verbessern.

leichtbauatlas.de Seite 2 von 7

Über dieses Projekt

Vorgehen


Das Projektteam analysiert den gesamten Fertigungsprozess – vom digitalen Entwurf bis zur verzinkten Endkomponente. Zu Beginn entwerfen die Forschenden bionisch inspirierte Knotenstrukturen, die sie mithilfe von Topologieoptimierung materialeffizient gestalten. Dabei nutzen sie numerische Simulationsmethoden, um Gewicht, Festigkeit und Steifigkeit optimal abzustimmen.

In der Fertigung setz das Team das WAAM-Verfahren ein: Schweißroboter tragen schichtweise Schweißdraht auf – schnell, flexibel und mit hohem Materialauftrag. Zusätzlich erproben die Wissenschaftlerinnen und Wissenschaftler Methoden zur werkstoffgerechten Steuerung von Festigkeiten durch den Einsatz verschiedener Stahlsorten.

Zur Qualitätssicherung untersuchen sie die mechanisch-technologischen Eigenschaften der Bauteile, ebenso wie Verzug, Eigenspannungen und Oberflächengüte. Auch die Korrosionsbeständigkeit testen sie umfassend – ein zentraler Schritt für die Baupraxis. Abschließend entwickeln die Forschenden Bemessungsansätze und Richtlinien zur normgerechten Auslegung und Anwendung der neuartigen WAAM-Knoten im Stahlbau.

leichtbauatlas.de Seite 3 von 7

Über dieses Projekt

Förderlaufzeit:

Förderkennzeichen: 03LB3056 **Fördersumme:** 1,1 Mio. EUR

Abschlussbericht:

Weiterführende Webseiten:

☑foerderportal.bund.de/foekat/jsp/SucheAction.do?

actionMode=view&fkz=03LB3056A - WAAMlight im Förderkatalog des

Bundes

leichtbauatlas.de Seite 4 von 7

Projektkoordination

Ansprechperson:

Hr. Prof. Dr.-Ing. habil Jean Pierre Bergmann

+49 03677 69-2980

jeanpierre.bergmann@tu-ilmenau.de

Organisation:

Technische Universität Ilmenau

Gustav-Kirchhoff-Platz 2 98693 Ilmenau Thüringen Deutschland

☑ www.tu-ilmenau.de/fertigungstechnik/

Projektpartner

IGESS Ingenieurgesellschaft für Stahlbau und Schweißtechnik mbH

Carl Cloos Schweißtechnik Gesellschaft mit beschränkter Haftung, ZINQ Technologie GmbH

leichtbauatlas.de Seite 5 von 7

	Realisierung
Angebot	
Dienstleistungen & Beratung Beratung, Konstruktion, Prototyping, Prüfung, Simulation	✓
Produkte Bauteile & Komponenten	✓
Technologiefeld	
Anlagenbau & Automatisierung	
Design & Auslegung Fertigungsleichtbau, Formleichtbau, Hybride Strukturen, Konzeptleichtbau	✓
Funktionsintegration	
Mess-, Test- & Prüftechnik	
Komponenten- & Bauteilanalyse, Sichtanalyse (z. B. Mikroskopie, Metallographie), Zerstörende Analyse, Zerstörungsfreie Analyse	✓
Modellierung & Simulation	
Lasten & Beanspruchung,	•
Lebenszyklusanalysen, Strukturmechanik, Werkstoffe & Materialien,	✓
Zuverlässigkeitsbewertung	

leichtbauatlas.de Seite 6 von 7

	Realisierung
Fertigungsverfahren	
Additive Fertigung 3D-Druck, Auftragsschweißen, Sonstige (DED-Arc)	✓
Bearbeiten und Trennen	
Beschichten (Oberflächentechnik) Sonstige (Verzinken)	✓
Faserverbundtechnik	
Fügen Schweißen	✓
Stoffeigenschaften ändern Wärmebehandeln	✓
Textiltechnik	
Umformen	
Urformen	
Material	
Biogene Werkstoffe	
Fasern	
Funktionale Werkstoffe	
Kunststoffe	
Metalle Stahl	✓
Strukturkeramiken	
(Technische) Textilien	
Verbundmaterialien	

leichtbauatlas.de Seite 7 von 7