
Über dieses Projekt

SmartWeld

Leichtbaupotenzial im Stahlbau heben: durchgängig digitalisierte Fertigungsund Prüfkette

Anwendung:

Material: Stahl

leichtbauatlas.de Seite 1 von 7

Über dieses Projekt

Dieses Projekt wird gefördert im Technologietransfer-Programm Leichtbau (TTP LB) durch das Bundesministerium für Wirtschaft und Energie.

Technologietransfer-Programm Leichtbau

Hintergrund

Offshore-Windenergieanlagen stehen auf einer gewaltigen, bis zu 60 Meter hohen Tragstruktur; der größere Teil davon bleibt unterhalb der Wasserlinie verborgen. Verwendet wird heute oft ein einziger stählerner Pfahl, ein sogenannter Monopile. Dazu werden bis zu 2.000 Tonnen Stahl zusammengeschweißt – bei dessen Erzeugung große Mengen an CO# freigesetzt werden.

Deutlich geringer fällt die Tonnage beim Transport und der bei der Stahlerzeugung freigesetzte CO#-Anteil aus, wenn statt des Monopiles filigranere Tragstrukturen verwendet werden. Diese als Jacket-Gründungen bezeichneten Leichtbaustrukturen stellen fertigungstechnisch jedoch eine Herausforderung dar, so dass CO#-Einsparpotenziale bislang industriell nicht umgesetzt werden.

Das hat vor allem mit den sehr komplexen Schweißnähten zu tun: Die Jacket-Gründungen werden heute meist manuell zusammengeschweißt und später mit Spezialschiffen zu ihrem Einsatzort gebracht. Toleranzen bei der Fertigung von Hand und hohe Sicherheitsanforderungen machen eine konservative Auslegung erforderlich, d.h. es werden dickwandige Bauteile verarbeitet.

Ziel

Ziel von SmartWeld ist es, mit einer durchgängig digitalisierten Fertigungs- und Prüfkette beim Bau der Gründungen die Verwendung von Leichtbautechniken möglich zu machen. Dafür soll der Schweißprozess der komplexen Nähte an den Tragstrukturen so angepasst werden, dass er besser automatisiert werden kann. Gelingt das, werden die Nähte dadurch außerdem langlebiger. Die Strukturen könnten dadurch zudem dünnwandiger hergestellt werden. Sie würden so weniger Stahl verbrauchen und damit CO# einsparen.

Mit einer durchschnittlichen 12-Megawatt-Anlage ließen sich gegenüber einem Monopile so etwa 20 Prozent an Gewicht und damit 400 Tonnen Stahl einsparen. Das entspricht rund 800 Tonnen CO#. Durch ein optimiertes Design der Schweißnähte und Einsparungen beim energieintensiven Schweißen selbst, ließe sich der CO#-Anteil in der Fertigung noch weiter reduzieren. Für einen Windpark mit 100 Anlagen um insgesamt mehr als 100.000 Tonnen.

leichtbauatlas.de Seite 2 von 7

Über dieses Projekt

Vorgehen

Um die neuen Fertigungstechnologien später möglichst schnell in der Industrie zu nutzen, arbeiten die Forscherinnen und Forscher so praxisnah wie möglich. Die Industriepartner des Forschungsprojekts entwickeln serientaugliche Demonstrationsanlagen unter echten Herstellungsbedingungen. Auf diese Weise können die Forschungsergebnisse wie eine "Blaupause" auf andere Bereiche des Stahlbaus übertragen werden, in denen großformatige Bauten wie zum Beispiel Brückenkonstruktionen gefertigt werden.

Im Rahmen des Vorhabens werden bereits mehrere Demonstrator-Knoten angefertigt, die anschließend verschiedenen Ermüdungsversuchen unterzogen werden – begleitet von Simulationen zur Rissentwicklung und zum Rissfortschritt. Bereits durchgeführte Versuche zur Automatisierung der Schweißprozesse konnten die Fertigungsgeschwindigkeit deutlich steigern.

leichtbauatlas.de Seite 3 von 7

Über dieses Projekt

Förderlaufzeit:			

Förderkennzeichen: 03LB2022 **Fördersumme:** 3,2 Mio. EUR

Projektkoordination

Ansprechperson:

Hr. Dr. Andreas Pittner

+49 30 8104-3696

Andreas.Pittner@bam.de

Organisation:

Bundesanstalt für Materialforschung und -prüfung (BAM)

Unter den Eichen 87 12205 Berlin Berlin Deutschland

☑ www.bam.de

Projektpartner

Fraunhofer IEWS, JÖRSS-BLUNCK-ORDEMANN GmbH, Salzgitter Mannesmann Forschung GmbH

Einordnung in den Leichtbau

Realisierung

Angebot

Dienstleistungen & Beratung

Produkte

Bauteile & Komponenten

leichtbauatlas.de Seite 5 von 7

	Realisierung
Technologiefeld	
Anlagenbau & Automatisierung Automatisierungstechnik, Robotik	✓
Design & Auslegung Sonstige	✓
Funktionsintegration	
Mess-, Test- & Prüftechnik Komponenten- & Bauteilanalyse	✓
Modellierung & Simulation Lasten & Beanspruchung	✓
Verwertungstechnologien	
- Fertigungsverfahren	
Additive Fertigung	
Bearbeiten und Trennen	
Beschichten (Oberflächentechnik)	
Faserverbundtechnik	
Fügen Schweißen	✓
Stoffeigenschaften ändern	
Textiltechnik	
Umformen	

leichtbauatlas.de Seite 6 von 7

Einordnung in den Leichtbau	
	Realisierung
Material	
Biogene Werkstoffe	
Fasern	
Funktionale Werkstoffe	
Kunststoffe	
Metalle Stahl	✓
Strukturkeramiken	
(Technische) Textilien	
Verbundmaterialien	
Zellulare Werkstoffe (Schaumwerkstoffe)	

leichtbauatlas.de Seite 7 von 7