Über dieses Projekt

CaPreFloor

Schwere Betondecken ersetzen: vorgefertigte Deckenelemente aus Carbonbeton

Anwendung:

Material: Textilfaserverstärkter Beton

Dieses Projekt wird gefördert im Technologietransfer-Programm Leichtbau (TTP LB) durch das Bundesministerium für Wirtschaft und Klimaschutz.

Technologietransfer-Programm Leichtbau

Hintergrund

Beton ist der weltweit meistverwendete Baustoff. Vor allem bei der Produktion von Zement, der die Grundlage für das Herstellen von Beton bildet, werden große Mengen an Treibhausgasen emittiert. Die Zementherstellung ist für rund 8 Prozent der weltweiten CO2-Emissionen verantwortlich. Für die Transformation des Bausektors ist es daher zentral, vor allem den Zementverbrauch zu reduzieren. Eine Möglichkeit ist das schrittweise Ersetzen von Stahl durch vorgespannte Carbonbewehrung. Dies führt zur Steigerung der Material- und Energieeffizienz, denn es werden schlanke, massenreduzierte und damit ressourcensparende Strukturen geschaffen. Ein besonders interessantes Anwendungsgebiet ist die Verwendung von Carbonbeton im Bereich der Geschossdecken, für die in konventioneller Bauweise große Mengen Stahlbeton genutzt werden.

leichtbauatlas.de Seite 1 von 6

Über dieses Projekt

Ziel

Die Projektpartner wollen die üblicherweise 30 cm starken Betondecken im Massivbau durch leichte, nicht korrosionsgefährdete Flächentragwerke ersetzten. Hierfür nutzen sie mit Carbon vorgespannte Betonelemente, deren Querschnitt sie auf maximal 10 cm reduzieren. Den Schwerpunkt legen die Forschenden auf vorgefertigte Deckenelemente. Diese sind besonders nachhaltig, da bei der Herstellung weniger Abfall anfällt, sie leichter zurückzubauen sind und besser wiederverwendet werden können. Die mit Carbon vorgespannten Deckensysteme sollen alle Anforderungen an die Statik sowie den Brand-, Wärme- und Schallschutz einhalten und gleichzeitig praxistauglich sein.

Vorgehen

Diese nachhaltigen Decken werden in einem multidisziplinären Ansatz entwickelt und erprobt. Dazu gehört sowohl das Entwickeln der Herstellungsmethoden inklusive der Anlagentechnik sowie die Prognose und Validierung der Qualität der Decken. In einem umfassenden Versuchsprogramm werden die Carbonbetonbauteile auf ihr Trag- und Verformungsverhalten unter Kurz- und Langzeiteinwirkungen getestet. Dies umfasst den Luft- und Trittschallschutz sowie den Brandschutz. Die Versuchsergebnisse dienen zur Validierung der nummerischen Berechnungsmodelle, die in allen Disziplinen verwendet und mit denen die verschiedenen Kenngrößen gesamtheitlich optimiert werden. Die Dimensionierung der Bauteilquerschnitte inklusive der Verbindungsmittel und Auflager erfolgt gemäß geltender Normung im Rahmen der statischen Untersuchungen. Zusätzlich zu den Kleinversuchen werden Realmaßstabmodelle gebaut und erprobt.

leichtbauatlas.de Seite 2 von 6

Über dieses Projekt				
Förderlaufzeit:				
Förderkennzeichen:	03LB3089	Fördersumme:	1,9 Mio. EUR	
Weiterführende Webseiten:	☑foerderportal.bund.de/foekat/jsp/SucheAction.do? actionMode=view&fkz=03LB3089A - CaPreFloor im Förderkatalog des Bundes			

leichtbauatlas.de Seite 3 von 6

Projektkoordination Ansprechperson: Hr. Max Dombrowski +49 15679 062099 m.dombrowski@tu-berlin.de Organisation: TU Berlin Gustav-Meyer-Allee 25 13355 Berlin Berlin Deutschland ✓ www.ek-massivbau.tu-berlin.de

Projektpartner thomas allton GmbH

Einordnung in den Leichtbau			
	Realisierung		
Angebot			
Dienstleistungen & Beratung Erprobung & Versuch	✓		
Produkte Bauteile & Komponenten, Maschinen & Anlagen, Werkzeuge & Formen	✓		

leichtbauatlas.de Seite 4 von 6

	Realisierung
Technologiefeld	
Anlagenbau & Automatisierung Anlagenbau, Automatisierungstechnik, Handhabungstechnik	✓
Design & Auslegung Fertigungsleichtbau	✓
Funktionsintegration	
Mess-, Test- & Prüftechnik Komponenten- & Bauteilanalyse, Sonstige (Bauakustik und Feuerwiderstand)	✓
Modellierung & Simulation	
Verwertungstechnologien	
Fertigungsverfahren	
Additive Fertigung	
Bearbeiten und Trennen	
Beschichten (Oberflächentechnik)	
Faserverbundtechnik Gießen (Beton)	✓
Fügen	
Stoffeigenschaften ändern	
Textiltechnik Wirken, Gelegeherstellung	✓
Umformen	

leichtbauatlas.de Seite 5 von 6

Einordnung in den Leichtbau	
	Realisierung
Material	
Biogene Werkstoffe	
Fasern	
Funktionale Werkstoffe	
Kunststoffe	
Metalle	
Strukturkeramiken	
(Technische) Textilien	
Verbundmaterialien Textilfaserverstärkter Beton	✓
Zellulare Werkstoffe (Schaumwerkstoffe)	

leichtbauatlas.de Seite 6 von 6